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NUMERICAL CALCULATION OF PO"E1vTLAL-ENERGY CURVES 

BY RYDBERG-KLEIN-REES METHOD 

by Frank J. Zeleznik 

L e w i s  Research Center 

STJMMARY 

A technique i s  presented for t h e  numerical evaluat ion of t h e  i n t e g r a l s  oc- 
curr ing i n  t h e  Rydberg-Klein-Rees method of c a h u l a t i n g  po ten t i a l  energy curves. 

INTRODUCTION 

The potential-energy curves f o r  t he  bound states of diatomic molecules can 
be obtained from spectroscopic constants by using t h e  Rydberg-Klein-Rees method 
( refs .  1 t o  3) .  
and rmin i n  t e r m s  of two a u x i l i a r y  funct ions f and g: 

Klein ( r e f .  2 )  expressed t h e  turn ing  poin ts  of motion rma, 

Both of t h e  funct ions f and g depend parametr ical ly  on the  po ten t i a l  
energy U and an add i t iona l  parameter K = J(J + 1)35 /2p where J i s  the  
r o t a t i o n a l  quantum number and 1-1 i s  t h e  reduced m a s s .  The funct ions f 
and g a r e  defined as 

d I  11' [ U  - E ( I , K ) I 1 l 2  
f =.+ 
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Here E(1,K) represents  the v ib ra t iona l - ro t a t iona l  energy levels, and 
I = h(v  + 1/2) with v represent ing  t h e  v ib ra t iona l  quantum number. From 
spectroscopic da ta ,  t h e  energy levels are genera l ly  expressible  i n  t h e  form 

\ / 2=0 m=O 

where YZm are t h e  usual  spectroscopic constants .  The upper limits of i n t e -  
g ra t ion  i n  equations (1) and ( 2 )  are obtained from E ( I ' , K )  - U = 0. 

Rees (ref.  3) evaluated t h e  in t eg ra l s  of equations (1) and ( 2 )  ana ly t i ca l -  
l y  f o r  spec ia l  cases  where E ( 1 , K )  w a s  e i t h e r  quadratic or cubic i n  I. The 
r e s u l t s  i n  t h e  cubic case w e r e  not i n  a very convenient form f o r  computation. 
The r e s u l t s  i n  t h e  quadratic case,  however, have been used as the  bas i s  f o r  
r a t h e r  extensive ca lcu la t ions  by Vanderslice and coworkers ( r e f s .  4 and 5)  and 
o thers  (refs. 6 and 7 ) .  Molecules, whose da ta  could not be adequately repre-  
sented over t he  e n t i r e  range by a quadrat ic ,  were t r e a t e d  by piecewise f i t t i n g  
of quadrat ics  t o  t h e  energy l eve l s .  A s  pointed out by Weissman, Vanderslice, 
and Bat t ino ( re f .  8), t h i s  piecewise f i t t i n g  can lead t o  e r ro r s .  

The d i f f i c u l t y  i n  t h e  numerical i n t eg ra t ion  of equations (1) and ( 2 )  i s  
caused by t h e  f a c t  t h a t  t h e  denominator of t h e  integrands has a zero a t  t h e  
upper l i m i t  of in tegra t ion .  
approximate manner by f i t t i n g  [U - E(I,K)]1/2 t o  an expression of t h e  form 
c ( 1 '  - I)-'. The constants  c and d were evaluated by using two poin ts  very 
close t o  t h e  upper l i m i t  of in tegra t ion .  w a s  f i t t e d  t o  a 
quadratic i n  I '  - I. These approximations w e r e  then  a n a l y t i c a l l y  in tegra ted  
t o  evaluate  t h e  contr ibut ions t o  f and g from regions close t o  1'. More 
recent ly ,  Weissman, Vanderslice and Bat t ino ( re f .  8 )  introduced a new in tegra-  
t i o n  var iab le  x = [U - E(1,K)'T' i n  order t o  e l iminate  t h e  s i n g u l a r i t y  from 
t h e  integrands.  Although cor rec t ,  t h i s  procedure produces some unnecessary nu- 
merical  inconvenience s ince  the  integrands are ava i lab le  as expressions i n  I 
and not t h e  in t eg ra t ion  var iab le  x. Thus, i n  numerical evaluat ion of t he  in -  
tegrals one cannot use a r b i t r a r i l y  se lec ted  increments of x but r a the r  must 
s e l e c t  increments of I and ca lcu la te  increments of x as 

Jarmain ( re f .  S).circumvented t h i s  problem i n  an 

Similar ly ,  aE/aK 

The technique t h a t  w i l l  be described here does not requi re  the  f i t t i n g  of 
t h e  integrand near the  upper l i m i t ,  and fu r the r ,  it e s s e n t i a l l y  r e t a i n s  the  
o r i g i n a l  i n t eg ra t ion  var iab le .  It i s  based on t h e  f a c t  t h a t  t h e  s i n g u l a r i t i e s  
i n  t h e  integrands of f and g can be e a s i l y  removed by an in t eg ra t ion  by 
p a r t s  . 

ALTERNATE METHOD FOR NUMERICAL EVALUATION 

The quant i ty  U - E t h a t  appears i n  t h e  integrands of f and g i s  a 
polynomial of order p i n  the  var iab le  I with coe f f i c i en t s  t h a t  depend 

2 



f 

I .  

on K. By int roducing t h e  notat ions x = v + 1/2 and K = J( J + 1) , t h e  
following dimensionless form i s  obtained: 

where 
c i e n t s  i n  t h e  polynomial P have t h e  e x p l i c i t  form 

Eo i s  a constant with t h e  dimensions of energy and where the  coe f f i -  

I n  t h i s  no ta t ion  t h e  upper l i m i t  of i n t eg ra t ion  I '  i n  equations (1) and ( 2 )  
corresponds t o  hxl(K) where xl(K) i s  the  smallest ,  r e a l ,  pos i t ive  root  of 
P(X; K )  . 

If the  exis tence of t he  improper i n t e g r a l  f i s  assumed, then equa- 
t i o n  (1) implies t h a t  t h e  polynomial 
If K~ i s  a pa r t i cu la r  value of K, then a change i n  sca le  z = x/xl(Ko) can 
be made, and t h e  polynomial P can be wr i t t en  as 

P(x;K) has a zero of order one a t  X1(K). 

where Al( K )  = x i (  K o ) A i (  K )  and where R( Z ; K )  i s  a polynomial i n  z of order 
p - 1. If K i s  chosen equal t o  KO, then equation ( 4 )  takes  on the  simple 
form 

where the  subscr ipt  has been dropped from KO f o r  convenience, and where now 

I Comparing coe f f i c i en t s  of l i k e  powers of z i n  equation (5) e s t ab l i shes  the 
r e l a t i o n  between B2 and Az as 
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2 = p - 1  

A l s o  from equation (5), f o r  z = 1 one can obta in  

2=0 

Combining t h i s  with equation ( 6 )  f i n a l l y  gives t h e  r e s u l t  

The numerator of t h e  integrand of g i s  e s s e n t i a l l y  a P / a ~ .  This p a r t i a l  
der iva t ive  i s  most conveniently evaluated by using the  f irst  equa l i ty  i n  equa- 
t i o n  ( 4 ) .  After  t h e  d i f f e r e n t i a t i o n  i s  performed, K i s  again chosen t o  be 
equal t o  KO. This gives,  after dropping t h e  subscr ipt  on K ~ ,  

P 3P 
E & ( Z ; K )  = C Z ( K ) Z ’  

2=0 

where 

The i n t e g r a l s  f o r  f and g can be wr i t t en  i n  dimensionless form by 
using t h e  Bohr rad ius  a. as a un i t  of  length and Eo = E2/2pa$ as a un i t  of 
energy. A l s o ,  making a change i n  sca le  t o  the  new var iab le  z and considering 
t h e  pa r t i cu la r  value K t h a t  i s  equal t o  KO r e s u l t  i n  
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where the  subscr ip t  on K~ has again been de le ted  f o r  convenience. Subst i -  
t u t i n g  equation ( 5 )  f o r  
i n t eg ra t ion  by p a r t s  give 

P ( Z ; K )  i n t o  equations ( 9 )  and (10) and performing an 

In  equations (11) and (12) t h e  objec t ive  of removing the  s i n g u l a r i t y  of t h e  
integrands a t  t h e  upper l i m i t  has been achieved. 

For t h e  important case K = 0, t h e  polynomial coe f f i c i en t s  required t o  
evaluate  the  integrands of equations (11) and ( 1 2 )  have t h e  r e l a t i v e l y  simple 
forms 

-, P J n = 0 ,  1,. . 

No d i f f i c u l t i e s  were encountered i n  t h e  numerical app l i ca t ion  of equations 
(ll), ( 1 2 ) ,  and (13)  t o  t h e  ca l cu la t ion  of potent ia l -energy curves f o r  severa l  
diatomic molecules by using standard in t eg ra t ion  techniques.  In  f a c t ,  t he  r e -  
s u l t s  of s ing le  and double prec is ion  ca lcu la t ions  f o r  the  ground state of hy- 
drogen agreed t o  at l e a s t  seven f igu res  when using t h e  spectroscopic constants  
of Weissman, Vanderslice, and Bat t ino ( r e f .  8 ) .  

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, September 18, 1964 
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